window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-29484371-30');
Monday , January 21 2019
TESTIFY 728X90
RHINOS 2018-2019 728
Bordertown Undergroun Show 728
JustLikeThat728
Home | Tag Archives: Amy’s Everyday Astronomy

Tag Archives: Amy’s Everyday Astronomy

Amy’s Everyday Astronomy: NASA Confirms Voyager 2 Entered Interstellar Space

Back in 1977, Voyager 2 was launched 16 days before Voyager 1. Both spacecraft were designed to last five years in order to conduct up-close and personal studies of Jupiter and Saturn.

As the success and longevity of the missions continued, remote reprogramming was used to give the twins greater capabilities. This allowed the mission parameters to change from a two-planet to a four-planet flyby.

Knowing the spacecraft were never destined to return to Earth, each was loaded with a Golden Record of Earth sounds, pictures, and messages in multiple languages.

The Voyager story has inspired generations of scientists and engineers, as well as music, art, and films like Star Trek: The Motion Picture.

And while we’ve not found that either has yet been enhanced by alien tech, the spacecraft and their respective Golden Records could last billions of years. While the twins haven’t been out in space for quite that long, their five-year mission has stretched to 41 years, so far. This makes Voyager 2 the longest running mission of NASA.

Even though Voyager 1 was launched second, the twins were sent on different trajectories, allowing Voyager 1 to enter interstellar space back in 2012.

Interstellar space is the area that lies beyond the Heliosphere. For reference: the outflow of plasma from the sun, also known as solar wind, creates a bubble that envelopes all the planets in our solar system. It is this bubble that is known as the Heliosphere.

The space surrounding Voyager 2 was predominately filled with plasma flowing from the Sun, until recently.

Evidence of this comes from Voyager’s Plasma Science Experiment (PLS), an onboard instrument that uses electrical current of the plasma to detect the temperature, density, speed, pressure, and flux of the solar wind. Since November 5th, Voyager 2 has observed a steep decline in the speed of the solar wind particles making it likely that it has exited the Heliosphere.

And, indeed, NASA confirmed today that Voyager 2 has also entered interstellar space.

“Voyager has a very special place for us in our heliophysics fleet,” said Nicola Fox, director of the Heliophysics Division at NASA Headquarters. “Our studies start at the Sun and extend out to everything the solar wind touches. To have the Voyagers sending back information about the edge of the Sun’s influence, gives us an unprecedented glimpse of truly uncharted territory.”

Although the twins have left the heliosphere, they have no yet left the solar system. Far beyond the planets is an area known as the Oort Cloud. This is a collection of small objects that are still under the Sun’s gravitational influence. While the actual width of the Oort Cloud in not known, it is estimated to extend from roughly 1000 AU to about 100,000 AU (an astronomical unit, or AU, is the distance from the Earth to the Sun and is the standard measurement used when calculating distances within our solar system).

Given this estimation, it will likely be another 300 years before Voyager 2 reaches the inner edge of the Oort Cloud at its current speed. That means it could take 30,000 years to fly beyond it.

“I think we’re all happy and relieved that the Voyager probes have both operated long enough to make it past this milestone,” said Suzanne Dodd, Voyager project manager at NASA’s JPL. “This is what we’ve all been waiting for. Now, we’re looking forward to what we’ll be able to learn from having both probes outside the heliopause.”

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: Astronomers Confirm Presence of Water in Exoplanet Atmosphere

For decades, scientists have been on the hunt for planets outside our solar system. Finding them is key to continuing the search for life outside our planet, as well as learning about how other star systems are formed.

Detecting exoplanets is no easy business, however, since we lack the long-range sensor technology of the Star Trek Universe. But astronomers are ingenious inventors of new ideas, and over the years have come up with different methods for detecting these alien worlds.

The first method that worked was the Radial Velocity Method (aka Doppler Spectroscopy). Relying on the fact that stars are affected by the gravitational tugs from their orbiting planets, Radial Velocity is able to measure changes in the light spectrum of the star being monitored.

This works because when the star is moving closer to the observer, the light appears slightly shifted toward the blue spectrum. If the star is being pulled away, the spectrum shift will be slightly red.

For finding Earth-like planets, Transit Photometry is used. This method measures minute changes in brightness as a planet passes between the observer and the host star. If this change lasts for a fixed amount of time and occurs at regular intervals, that increases the likelihood that a planet is passing in front of the star during its orbital period.

Measuring how much the brightness of the host star changes gives scientists an idea of the actual size of the planet. When using this method in conjunction with the Radial Velocity method, astronomers are able to calculate the planet’s density.

Microlensing is the method used to detect planets that are not in our cosmic neighborhood. This method, based on Einstein’s Theory of Relativity, is a bit more complicated. Here’s how it works: let’s say you have a far away star, we’ll call him Roger. Roger has a large, overweight neighbor named Big Blue.

When Roger and Big Blue are very close to each other, say talking near the fence line that divides their yards about the latest football game, the lensing affect will cause Roger and Big Blue to appear further apart than they actually are. Now imagine that on another day, Roger is standing in line at a drugstore counter directly behind Big Blue. Roger would now appear to be surrounding Big Blue on all sides.

This affect is known as the Einstein Ring, and happens when the ‘lensing star’ (Big Blue) bends the light of the source star (Roger) all around it. Now, picture Roger and Big Blue are at a barbeque and Roger’s young son, Ivan, is standing closer to Big Blue than he is to Roger.

According to Einstein, this would cause there to appear to be a third Roger. When observers from Earth measure this, it appears as a temporary spike in brightness that can last from several hours to several days. When hunting for planets that are very far away, these spikes are telltale signs of a planet. And by measuring the characteristics of the light curve (intensity and length), astronomers can learn a lot about the planet’s mass and orbit.

Directly observing exoplanets is very difficult to do, but not impossible. In 2008, scientists were able, for the first time, to directly image three planets orbiting the star HR8799 thanks to the Keck and Gemini telescopes. In 2010, astronomers were able to image a fourth planet in this system. But this year, the focus has been on one planet in particular, HR8799c. At seven times the mass of Jupiter it’s a rather large target.

Using a combination of the two telescope’s technologies, scientists were able to confirm the presence of water in its atmosphere. Adaptive optics on one telescope were used to counteract the blurring affects of the Earth’s atmosphere. The spectrometer on the Keck 2 called NIRSPEC (Near-Infrared Cryogenic Echelle Spectrograph), is a high-resolution spectrometer that works in the L-Band.

This type of infrared light has a wavelength of 3.5 micrometers which is a region of the spectrum that shows many detailed chemical fingerprints.

“The L-Band has gone largely overlooked before because the sky is brighter at this wavelength,” says Dimitri Mawet, an associate professor of astronomy at Caltech and research scientist at JPL. “If you were an alien with eyes tuned to the L-Band, you’d see an extremely bright sky. It’s hard to see exoplanets through this veil.”

But, when astronomers combined L-Band spectrography with the adaptive optics, they were able to overcome these difficulties. Instead, they were able to precisely measure the chemical signature of the atmosphere of HR8799c, which confirmed not only the presence of water but the absence of methane.

“We are now more certain about the lack of methane in this planet,” said Ji Wang, former postdoctoral scholar at Caltech and Assistant Professor at Ohio State University. “This may be due to mixing in the planet’s atmosphere. The methane, which we would expect to be there on the surface, could be diluted if the process of convection is bringing up deeper layers of the planet that don’t have methane.”

With technologies like adaptive optics and the spectroscopy of NIRSPEC being applied to future telescopes such as KPIC (Keck Planet Imager and Characterizer), direct planet imaging will be able to detect alien worlds that are fainter and closer to their host star than ever before. In the meantime, astronomers are not only learning a great deal about the ways planets in our universe form, but they are finally able to see these worlds with their own eyes.

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: NASA to Broadcast Russian Supply Mission to ISS

Back in early October, the Soyuz Spacecraft carrying Cosmonaut Alexey Ovchinin and Astronaut Nick Hague was forced to abort its mission during launch due to separation failure of the first stage boosters.

Luckily for those aboard the ISS, there were still plenty of supplies to get the crew through the next few months of zero-G living.

Recently, NASA announced the Russian cargo vessel, Progress 71, is set to launch this Friday, November 16th from the Baikonur Cosmodrome in Kazakhstan at 1:41pm EST.

Loaded with almost three tons of fuel, food, and supplies, the unmanned spacecraft will dock with the Zvezda Service Module on the

Photo courtesy NASA

Russian segment where it will remain for the next four months.

In March, the Progress 71 will depart for deorbit into Earth’s atmosphere.

For those interested in watching the launch live, you can see it on NASA Television Website. For those here in the Borderland, the live stream will begin at 11am local time.

Additionally, if you’d like to watch the live broadcast of the docking, tune in to NASA TV on Sunday, November 18th, at 11:45am MST.

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: Swedish Research Team Develops New Solar Energy Storage Method

El Paso is known as the Sun City for a good reason. From blistering summers, to mild winters, the desert southwest knows the sun well.

On average, we experience more sunny days than any other kind of weather. And given the amount of energy the sun puts out every hour—enough to power the entire planet Earth for one year—you’d think converting to solar power would be the best option. But with the cost of solar paneling and converting buildings to use these options, it can be very a little expensive to make the change.

Surprisingly, the biggest drawback to solar power conversion may be the batteries. They store only a limited amount of the total energy received by the sun. This means power usage needs to be closely monitored. Gauges and meters must be observed in order to insure you have enough energy to use at night and during cloudy days. We won’t even talk about the recurring cost of replacing the batteries when needed.

But a change could soon be on the horizon.

A research team in Sweden has made a potential breakthrough in the ability to store solar energy. As an alternative to batteries, the team has developed a specialized fluid called Solar Thermal Fuel. Composed of carbon, hydrogen, and nitrogen, the fluid can hold energy from the sun for long periods of time and expel it on demand in the form of heat. When the molecules are hit by sunlight, the bonds between atoms are rearranged. This chemical conversion traps energy within the molecules. The energy stays in the storage container even when the molecules cool down to room temperature.

When energy is needed, the molecules are passed through a catalyst. This process rearranges the chemical bonds back to what they were which releases a lot of heat. The hope is that this can be used in residential heating systems, water heaters, dishwashers, clothes dryers, and much more.

In a recent interview with NBC News, MIT engineer, Jeffrey Grossman explained, “A solar thermal fuel is like a rechargeable battery, but instead of electricity, you put sunlight in and get heat out, triggered on demand.”

The emissions-free energy system can now store energy for up to 18 years, according to nanomaterials scientist Kasper Moth-Poulsen from Chalmers University. In fact, the researchers claim their fluid are currently capable of holding 250 watt-hours of energy per kilogram. According to the NBC interview, that’s double the capacity of Tesla’s Powerwall batteries.

This has the potential to save money and cut down on pollution when it comes to the various heating needs of a home or commercial building. All that’s left is to figure out how to turn this energy into usable electricity for powering all our electronic devices.

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: Borderland Sky Watching Events for November

Happy November, Borderland Sky Watchers! This month promises some decent sights for spending time outdoors during the cooler temperatures of evening. There will be several planets visible, a meteor shower, as well as an asteroid, and even a comet.

All month long, Venus will be visible in the pre-dawn sky. So, if you’re an early riser, keep an eye out in the east just before sunrise to see this bright planet. On November 7th, Jupiter will be near the planet Mercury about a half hour after sunset.

The views for this will be best on the west side of town where the horizon is not blocked by mountains. The following week, on November 11th, Saturn will be near the crescent moon starting at 5:45pm. On November 14th, Mars will be near the moon after 6:30pm.

Over the rest of this month, Mars will fade in brightness as it moves further away from Earth. But it will still be visible in the night sky on November 26th when the InSight Lander touches down on the Red Planet.

On November 17th, the Leonid meteor shower will reach its peak. As the Earth passes through the dust left behind by Comet 55P Temple-Tuttle, sky watchers can expect to see around 10 meteors per hour when viewing just after midnight.

Happening all month, Asteroid 3Juno will be visible through small, backyard telescopes. You can find it by looking west/southwest between the constellations Orion (easily the most recognizable constellation in the autumn/winter sky) and Taurus.

Another great sight through backyard telescopes or a good pair of binoculars will be Comet 46P. Visible all month long near the constellations Orion and Taurus, there is the possibility that this comet will brighten enough to be seen with the naked eye.

So, take your chairs and spend some time outside with family and good friends, because you never know what you’ll see when you just keep your eyes to the skies.

If you get pics or video of any of these events, you can email them to me at LunaPoetic@gmail.com and I will feature them in an upcoming article.

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: New Mexico Solar Observatory Re-Opens After Mysterious Closure

On September 6th, the Association of Universities for Research in Astronomy (AURA), in conjunction with the National Science Foundation, closed the Sunspot Solar Observatory at Sacramento Peak, New Mexico.

With FBI on sight due to an unnamed security threat, all personnel and onsite residents were evacuated, and the local post office was also shut down.

A statement to the public was all the information that was given at the time.

Thank you all for your patience while the closure at Sunspot Observatory is resolved. Our other facilities remain open and NSO is operating as normal. AURA – our management organization – is addressing a security issue at Sunspot Observatory at Sacramento Peak, New Mexico and has decided to temporarily vacate the facility as a precautionary measure.

With no further information having been released, the theories were all over the map with everything from a terrorist plot to an armada of alien ships having been spotted near the sun.

On Monday, however, all of that changed. The residents that vacated their homes will now be returning and all employees will also return to work this week, according the a newly released statement.

AURA has been cooperating with an on-going law enforcement investigation of criminal activity that occurred at Sacramento Peak. During this time, we became concerned that a suspect in the investigation potentially posed a threat to the safety of local staff and residents. For this reason, AURA temporarily vacated the facility and ceased science activities at this location. 

The decision to vacate was based on the logistical challenges associated with protecting personnel at such a remote location, and the need for expeditious response to the potential threat. AURA determined that moving the small number of on-site staff and residents off the mountain was the most prudent and effective action to ensure their safety. 

In light of recent developments in the investigation, we have determined there is no risk to staff, and Sunspot Solar Observatory is transitioning back to regular operations as of September 17th. Given the significant amount of publicity the temporary closure has generated, and the consequent expectation of an unusual number of visitors to the site, we are temporarily engaging a security service while the facility returns to a normal working environment. 

We recognize that the lack of communications while the facility was vacated was concerning and frustrating for some. However, our desire to provide additional information had to be balanced against the risk that, if spread at the time, the news would alert the suspect and impede the law enforcement investigation. That was a risk we could not take.

At this time, the exact nature of the criminal activity has not been released. However, anyone planning a trip up there can likely expect an increased security presence while visiting the observatory for some time to come.

***

To read Amy’s previous stories, click here.

JustLikeThat728
TESTIFY 728X90
Bordertown Undergroun Show 728
RHINOS 2018-2019 728