window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-29484371-30');
Tuesday , April 23 2019
STEP 728
Bordertown Undergroun Show 728
Rugby Phoenix 2019
shark 728×90
Utep_DEC_728
ORDT_728
GECU FAMILY OF CARDS 728X90
Amy’s Astronomy
JustLikeThat728
Home | Tag Archives: nasa

Tag Archives: nasa

Amy’s Everyday Astronomy: Second Time’s a Charm for Soyuz

Back in October, Nick Hague and Alexey Ovchinin were forced to abort their flight to the ISS mid-launch due to failure of proper booster separation. Thursday afternoon, as physicists around the world celebrated Pi-Day, there was even more cause for celebration.

Following on the heels of a successful launch of the unmanned SpaceX Dragon-Crew loaded with supplies for the ISS that took place last week; Alexey Ovchinin and Nick Hague found themselves, once again, aboard a Soyuz rocket, this time with a third crew member, Christina Koch.

This marks the third flight into space for Ovchinin, the second for Hague, and the first for NASA astronaut Koch.

At 3:14pm EST, the Soyuz MS-12 rocket carrying the trio of astronauts successfully launched from the Baikonur Cosmodrome in Kazakhstan. Following an uneventful liftoff and four-orbit (six-hour) flight, the spacecraft docked to the station’s Rassvet module at 9:01pm.

The arrival of the trio restores the station’s crew compliment to six. Also aboard are Anne McClain of NASA, David Saint-Jacques of the Canadian Space Agency, and Commander Oleg Kononenko of Roscosmos.

For over 18 years, there has been a continued human presence on the station, as astronauts have lived and worked aboard in order to advance scientific knowledge and demonstrate new technologies. The zero-G environment allows for breakthroughs in research that are not possible on Earth, eventually enabling long-duration human and robotic exploration into deep space.

And this time is no different.

The new mission, Expedition 59, officially began for the crew at the time of docking. Crew members will spend the next six-months or so conducting roughly 250 science investigations in the fields of biology, Earth science, human research, physical sciences, and technology development.

Some of these investigations are sponsored by the U.S. National Laboratory, designated by Congress in 2005 to maximize its use for improving life on Earth. Highlights of these include devices that mimic the structure and function of human organs, free-flying robots, and an instrument that will measure Earth’s distribution of carbon dioxide.

Hague, Koch, McClain, and Saint-Jacques will begin preparations to venture outside the station’s Quest airlock for three planned spacewalks.

On March 22nd and 29th, spacewalks done in pairs will replace nickel-hydrogen batteries with newer, more the powerful lithium-ion ones (like those found in modern electronics) for power channels on one pair of the station’s solar arrays.

Then, on April 8th, the third spacewalk will be done to lay out jumper cables between the Unity module and the midpoint of the station’s backbone in order to establish a redundant power path to the Canadian-built robotic arm (Canadarm2) in order to enhance computer network capabilities.

While the astronauts work aboard the station, three resupply spacecraft—a Russian Progress, Northrop Grumman Cygnus, and SpaceX Dragon—are scheduled to arrive with science to support those investigations as well as additional supplies for the crew.

The crew will also be onboard during upcoming test flights of NASA’s Commercial Crew Program, which hopes to return human spaceflight launches for space station missions to US soil.

McClain, Saint-Jacques, and Kononenko are scheduled to return to Earth in June, while Ovchinin, Hague, and Koch aren’t set to leave the station until early this fall.

If you’re interested in following the NASA astronauts’ mission aboard the station, you can do so on their Twitter accounts: Nick Hague , Christina Koch, and Anne McClain.

You can also get news, images, and features from the space station on its Instagram or Twitter. 

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: Week of Success for NASA and SpaceX

Space, the final frontier…a frontier we haven’t been able to reach from American soil since the last space shuttle flew nearly 9 years ago. But that looks to change thanks to a successful test of SpaceX’s Crew Dragon earlier this month.

Perched atop a Falcon 9 rocket, the Crew Dragon was launched into a beautiful pre-dawn sky from Cape Canaveral, Floriada on March 2nd.

With a crew consisting solely of a dummy astronaut named Ripley, and a stuffed Earth plush toy, the capsule was also carrying supplies for those aboard the ISS.

Elon Musk, having dreamed of this moment since he started SpaceX in 2002, felt honored to have the Crew Dragon launch from Pad 39A. This is the very same launch pad from which the NASA Apollo moon missions took flight, as well as the last space shuttle mission back in 2011.

“Thank you for letting us do that,” Musk told NASA Administrator, Jim Bridenstine.

“Thank you for refurbishing it,” Bridenstine replied, referring to SpaceX’s upgrade to the launch site.

As one might expect, this was a little overwhelming for Musk, after having suffered so many failures early on with SpaceX test launches.

Back in those early days, Musk felt there was maybe only a 10% chance of SpaceX ever getting anything into orbit. “I’m a little emotionally exhausted. It’s super stressful, but it worked, so far,” Musk said in a post-launch press conference at Kennedy Space Center.

And the success continued!

On March 3rd, Demo-1, as the mission is being called, docked with the ISS in a display of remote precision that had everyone cheering. You can see highlights of the launch and docking here.

After having spent 5 days in space, delivering 400lbs of supplies to the space station, the Demo-1 mission ended, and the Crew Dragon saw success once again as it splashed down in the Atlantic Ocean just off the coast of Florida early this morning. You can see its re-entry and touchdown here. 

All of this helps pave the way for SpaceX to start plans for sending crewed flights into orbit this summer.

“The whole goal of SpaceX was crewed spaceflight. Improved space exploration technologies,” says Musk. “That’s actually the full name of the company, Space Exploration Technologies.”

But SpaceX is not alone in its endeavors. It is one of two companies contracted with NASA to fly astronauts to and from the ISS. Boeing, the other company working with NASA, is developing the CST-100 Starliner spacecraft that looks to launch astronauts into space using the Atlas V rockets.

Like SpaceX, Boeing plans to test uncrewed flights and in-flight abort systems before sending humans into orbit.

In fact, Starliner’s first uncrewed test mission to the ISS could likely launch as early as next month. Boeing will be testing the capsule’s emergency escape test system and, if successful, the first crewed demonstration flight could occur as early as May and then again in August of this year.

In the meantime, SpaceX is looking to launch its first crewed flight, called Demo-2, as early as July.

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: NASA Declares Opportunity Mission Complete

Wednesday was a bittersweet day for NASA and JPL as they said goodbye to the second of the rover twins exploring the Red Planet.

Launched in 2003, Opportunity landed shortly after its twin counterpart, Spirit, in 2004.

Though the mission is considered a success, it was declared complete this afternoon after NASA/JPL team members failed to receive a response from Opportunity after having sent the final recovery commands.

Initially slated to run for only 90 days, the total mission lasted a surprising 14 ½ years. At the onset, the mission was racked with issues beginning with a massive solar storm that threatened to irreparably damage the rovers. In order to save functionality, JPL ordered Spirit and Opportunity to completely shut down onboard computers in order to save them.

Once safely on the surface of Mars, mission specialists noticed that the heater on Opportunity’s robotic arm was stuck in the ON position.

This meant that precious battery power was being wasted. JPL then sent commands to the rover instructing it to go into deep sleep mode on a nightly basis. With a battery life consisting of 5000 charge/discharge cycles, it would now operate at a continued 80% capacity for the remainder of its mission.

Because this deep sleep mode could not be initiated prior to the historic dust storm that encircled the planet in June 2018, mission specialists believe this is the main reason for its failure to respond to recovery commands: the battery has likely been completely drained.

Another issue Opportunity encountered during the mission was that of the failure of the flash memory. When this stopped working, Opportunity could no longer save data collected in a given day, prior to shut down at night. This meant that the team back on Earth had to work quickly to download all the data collected each day to prevent an irretrievable loss of valuable information.

Despite these issues, Opportunity spent nearly two decades on Mars, producing some important scientific discoveries.

Akin to a forensic scientist, the rover was a robotic field geologist that used it rock sampling ability to determine information about Mars’ past. While today Mars is a cold, dry, and desolate place, it wasn’t always so. The Red Planet used to be quite the opposite: a hot and steamy place with violent meteor impacts and volcanic explosions. This was proven by Opportunity when it found evidence of past hydrothermal activity.

This evidence shows that Mars may once have been an extremely habitable place for hearty microorganisms.

The first mission given to Opportunity lasted for 9 years and hit geologic pay-dirt from the beginning. Starting at Little Eagle Crater, the rover made the journey to Endurance Crater, and then Victoria Crater.

This mission took 4 ½ years to complete. Younger rocks in these areas showed that liquid water had once existed below the surface. Though to say liquid water gives the wrong impression.

It was discovered that the liquid was in the form of sulfuric acid when the rover determined that the rocks in the area were composed of sulfate sandstone, which is largely made up of sulfur and evaporated salt water.

Once this part of the mission was complete, JPL set its sights on Endeavor Crater. Because of topographical issues, the route to Endeavor was not a direct one, making the journey take years. Once Opportunity was on the rim of the newest target, it saw evidence of drinkable water.

This was determined by studying rocks that predated the creation of the crater, itself, that were composed of clay minerals that are typically formed near neutral Ph (drinkable) water.

Chief Administrator Jim Bridenstine, joked that he takes full responsibility for the end of the rover mission since the massive dust storm and ensuing radio silence occurred shortly after he took on this new position with NASA.

But NASA promises we will see much more science to come with the launch of the Mars 2020 rover in July of next year. It is the legacy of Spirit and Opportunity that helped with the development of this newest mobile science station.

Mars 2020 will be equipped with better wheels, have the ability to talk to the orbiters, and the ability to do things faster with the help of auto-navigation that will allow the rover to navigate more complex terrain.

Slated to land in Jezero Crater in Columbia Hills, the rover will be looking for evidence of past life. Jezero Crater is known to have once had standing water within it and the team hopes to find out if life ever existed there. Additionally, JPL is hoping to find out why Mars’ climate changed and where all the life (if ever any existed) went.

Another cool mission we can look forward to is that of a sample return mission. This will allow samples collected on the Red Planet to be brought back to Earth for more detailed study about Mars’ past climate and habitability.

In talking of plans to eventually send humans to Mars, Bridenstine stresses the importance of figuring out how to safeguard our men and women against the deadly solar flares that affected Spirit and Opportunity en route, given that these flares are a regular occurrence. He reinforced the importance of working with international partners in order to get to Mars safely to work alongside the robots and rovers that will already be there.

He further stated that the main goal is to discover life on another world, especially given that the Curiosity rover found complex organic compounds on the Red Planet not too long ago. Though, Bridenstine admits these compounds do not guarantee that life ever existed on Mars.

As for the rovers, themselves, there are no plans to ever retrieve them. Mars is their permanent home and they sit where they worked as a testament to human ingenuity and the drive to learn and explore.

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Herald Post’s Amy Cooley Named ‘NASA Solar System Ambassador’ for West Texas

The El Paso Herald-Post is proud to announce that our contributor Amy Cooley, known best for her column Amy’s Everyday Astronomy, has been selected to be a NASA Solar System Ambassador for West Texas.

After undergoing a rigorous selection process and attending several classes with NASA, Amy is now able to work in an official capacity with educators and the public, alike, to give insight into NASA missions and programs.

Though many individuals apply for this opportunity, few are selected.

It is because of her education and background in astronomy and science that she was chosen to be among this elite group.

As part of her mission, Amy is looking to help educators make learning fun. Her goal has always been to make science and astronomy accessible to everyone. In an effort to show students the wonders of science and astronomy, Amy wants to come and inspire your students by engaging them in discussions and activities that will fire their imaginations. You can contact her at acooley@epheraldpost.com for more information.

As her first official act as NASA Ambassador, she would like to share with all college professors an exciting opportunity for their science and engineering students.

Professors will be able to connect their students with NASA and other college engineering students through the 2019 NASA Optimus Prime Spinoff Promotion and Research Challenge (NASA OPSPARC).

This mission (Mission 3) offers unique mentorship opportunities with other college students around the country. It will include building 3D virtual models and developing a marketing plan, which will all take place in a protected 3D virtual world. In order to get started, you can download the packet online.

Deadline for Mission 3 products is February 19, 2019. Selected teams will be notified and introduced to their college mentor by Friday, February 22nd. Mentors will work with their teams in the virtual world between February 22nd thru March 26th. Six finalists will be selected by March 29th.

Finalists will present to NASA and industry researchers April 10th and 11th within the virtual world. Winning teams will be announced by early May and will be invited to NASA’s Goddard Space Flight Center for behind-the-scenes workshops and an award ceremony June 19th and 20th.

If you have any questions about the NASA OPSPARC Mission, you can contact Sharon Bowers at sharon.bowers@nianet.org

Amy’s Everyday Astronomy: Global Warming and Its Effects on Seasons

As the Midwest prepares for a strong storm system caused by a polar vortex, some are wondering how there can still be talk of global warming when temperatures in the northern United States are due to reach lows not seen in decades, or even centuries.

The science behind these weather patterns and their connections can seem complicated. And though some still deny the human contribution to climate change, the overall scientific evidence of global warming is irrefutable.

As temperatures around the globe increase, polar ice melts, causing ocean and sea levels to rise. This allows for more evaporation to occur while simultaneously shifting the jet stream further south.

When this happens, colder arctic air pushes southward during the winter months. This, coupled with the excess evaporation of water, increases the chances for harsher winters with heavier snow storms and more freezing snaps.

This happens due to a rise in overall greenhouse gas levels. As the levels rise, many plants are unable to absorb as large a percentage of those gases as they could in the past due to the overabundance.

This increases the amount of greenhouse gas that remains in the atmosphere.

When this happens, the remaining carbon gasses then cause a rise in temperatures during spring and summer months. Hotter temperatures mean shorter growing seasons for various crops and other types of plants.

And the cycle continues.

In fact, a new study by NASA is showing a correlation between warming of tropical oceans and the potential affects it could have on increasing the frequency of extreme rain storms during summer months in the coming century.

NASA’s JPL study team recently combed through 15 years of data that was gathered by their Atmospheric Infrared Sounder (AIRS) instrument above the tropical oceans in order to determine if there is a correlation between the average sea surface temperature and the onset of severe storms.

What they discovered was that these extreme storms formed when the water’s surface temperature was higher than about 82°F (28°C).

“It is somewhat common sense that severe storms will increase in a warmer environment. Thunderstorms typically occur in the warmest season of the year,” says Hartmut Aumann, leader of the NASA/JPL team that did the study. “But our data provide the first quantitative estimate of how much they are likely to increase, at least for the tropical oceans.”

The currently accepted climate models have projected that the steady increase of carbon gases in the atmosphere will cause tropical ocean surface temperatures to rise by as much as 4.8°F (2.7°C) by the end of this century.

If this were to happen, the study team concludes that the frequency of extreme storms is likely to increase by as much as 60% by that time.

Admittedly, climate models are not perfect. But their results can be used as guidelines for those that are looking to prepare for the potential effects of a changing climate. These studies can also be used to help us determine how we can all work together to change the outcome by changing the way we affect the environment.

“Our results quantify and give a more visual meaning to the consequences of the predicted warming of the oceans,” Aumann said. “More storms mean more flooding, more structure damage, more crop damage, and so on, unless mitigating measures are implemented.”

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Blue Origin Set to Launch NASA-Sponsored Payloads Tuesday

Monday morning, officials with Blue Origin, the regional spaceflight company with launch facilities located just north Van Horn, announced a new launch scheduled for Tuesday morning.

Blue Origin’s next New Shepard mission (NS-10) is currently targeting liftoff Tuesday, December 18 at 7:30 am.  This will be the 10th New Shepard mission and is dedicated to bringing nine NASA-sponsored research and technology payloads into space through NASA’s Flight Opportunities program.

NASA’s Flight Opportunities program is an essential program for researchers providing access to microgravity for technology development. Blue supports NASA’s Flight Opportunities program and its role in perfecting technology for a future human presence in space.

Founded by Amazon founder Jeff Bezos, Blue Origin launches their missions from Van Horn, Texas, 120 miles east of El Paso.  Make sure to follow Blue Origin on Twitter for launch day updates and, to watch the launch live, log on to their website at BlueOrigin.com

The payloads flying with us on NS-10 include:

Carthage College Space Sciences Program: The Modal Propellant Gauging experiment led by Dr. Kevin Crosby is a joint effort with the NASA Kennedy Space Center Cryogenics Laboratory. It demonstrates a way to measure fuel levels in microgravity by using sound waves.

Controlled Dynamics Inc.: The Vibration Isolation Platform (VIP) aims to separate payloads from the normally occurring vibrations experienced during spaceflight. The payload led by Dr. Scott Green allows researchers to have a clear understanding of microgravity’s effects on their research results.

Johns Hopkins University Applied Physics Lab: On its second flight with Blue, the EM Field experiment will observe and collect data on the naturally occurring electromagnetic fields both inside and outside New Shepard during the launch. Principal Investigator Dr. Todd Smith will use success of this experiment to determine how global measurements of the Earth’s electromagnetic field can be conducted in the future.

NASA Goddard Space Flight Center: Cooling tightly-packed electronics onboard a spacecraft can be challenging, and many solutions have not been able to undergo robust testing. Principal Investigator Franklin Robinson will test one of these solutions in his Flow Boiling in Microgap Coolers experiment.

NASA Johnson Space Center: On its third flight on New Shepard, the Suborbital Flight Experiment Monitor-2 (SFEM-2) led by Dr. Katy Hurlbert will analyze various aspects of the flight environment during New Shepard’s mission profile, measuring cabin pressure, temperature, CO2, acoustic conditions, acceleration and more. The data collected will help future researchers on New Shepard design the most effective experiments for the vehicle.

Purdue University: Dr. Steven Collicott’s payload looks at Zero-Gravity Green Propellant Management Technology, which aims to help advance the use of a safer and more environmentally friendly rocket propellant by better understanding the fuel’s behavior in microgravity.

University of Central Florida: Two teams led by Dr. Josh Colwell and Dr. Addie Dove both have planetary science payloads on NS-10. The Collisions Into Dust Experiment (COLLIDE) aims to understand how dust particles react after surface contact during exploration missions to places such as the Moon, Mars and asteroids. The Collection of Regolith Experiment (CORE) addresses the unique challenge of collecting and analyzing material samples in microgravity.

University of Florida: Dr. Rob Ferl and Dr. Anna-Lisa Paul are adapting technology designed for the ISS to suborbital uses with their experiment, Validating Telemetric Imaging Hardware for Crew-Assisted and Crew-Autonomous Biological Imaging in Suborbital Applications. By recalibrating the way data is collected, the experiment will enable more biological research on suborbital missions.

Amy’s Everyday Astronomy: NASA Confirms Voyager 2 Entered Interstellar Space

Back in 1977, Voyager 2 was launched 16 days before Voyager 1. Both spacecraft were designed to last five years in order to conduct up-close and personal studies of Jupiter and Saturn.

As the success and longevity of the missions continued, remote reprogramming was used to give the twins greater capabilities. This allowed the mission parameters to change from a two-planet to a four-planet flyby.

Knowing the spacecraft were never destined to return to Earth, each was loaded with a Golden Record of Earth sounds, pictures, and messages in multiple languages.

The Voyager story has inspired generations of scientists and engineers, as well as music, art, and films like Star Trek: The Motion Picture.

And while we’ve not found that either has yet been enhanced by alien tech, the spacecraft and their respective Golden Records could last billions of years. While the twins haven’t been out in space for quite that long, their five-year mission has stretched to 41 years, so far. This makes Voyager 2 the longest running mission of NASA.

Even though Voyager 1 was launched second, the twins were sent on different trajectories, allowing Voyager 1 to enter interstellar space back in 2012.

Interstellar space is the area that lies beyond the Heliosphere. For reference: the outflow of plasma from the sun, also known as solar wind, creates a bubble that envelopes all the planets in our solar system. It is this bubble that is known as the Heliosphere.

The space surrounding Voyager 2 was predominately filled with plasma flowing from the Sun, until recently.

Evidence of this comes from Voyager’s Plasma Science Experiment (PLS), an onboard instrument that uses electrical current of the plasma to detect the temperature, density, speed, pressure, and flux of the solar wind. Since November 5th, Voyager 2 has observed a steep decline in the speed of the solar wind particles making it likely that it has exited the Heliosphere.

And, indeed, NASA confirmed today that Voyager 2 has also entered interstellar space.

“Voyager has a very special place for us in our heliophysics fleet,” said Nicola Fox, director of the Heliophysics Division at NASA Headquarters. “Our studies start at the Sun and extend out to everything the solar wind touches. To have the Voyagers sending back information about the edge of the Sun’s influence, gives us an unprecedented glimpse of truly uncharted territory.”

Although the twins have left the heliosphere, they have no yet left the solar system. Far beyond the planets is an area known as the Oort Cloud. This is a collection of small objects that are still under the Sun’s gravitational influence. While the actual width of the Oort Cloud in not known, it is estimated to extend from roughly 1000 AU to about 100,000 AU (an astronomical unit, or AU, is the distance from the Earth to the Sun and is the standard measurement used when calculating distances within our solar system).

Given this estimation, it will likely be another 300 years before Voyager 2 reaches the inner edge of the Oort Cloud at its current speed. That means it could take 30,000 years to fly beyond it.

“I think we’re all happy and relieved that the Voyager probes have both operated long enough to make it past this milestone,” said Suzanne Dodd, Voyager project manager at NASA’s JPL. “This is what we’ve all been waiting for. Now, we’re looking forward to what we’ll be able to learn from having both probes outside the heliopause.”

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: NASA Announces New Moon to Mars Commercial Partnerships

NASA Chief, Jim Bridenstine, announced today that nine US companies are eligible to bid on delivery services to the surface of the moon through Commercial Lunar Payload Services (CLPS) contracts.

The companies will be able to put up bids on delivering science and technology payloads, including integration and operations that will launch from Earth and land on the surface of the Moon. NASA expects to be just one of many customers that will use the commercial landing services.

Leading up to these selections, NASA’s Science Mission Directorate (SMD) initiated the request for the proposals. Serving as the interface between NASA mission directorates, the scientific community, and other external stakeholders, the SMD is helping to develop a strategy to enable an integrated approach for both robotic and eventual human exploration in NASA’s Moon to Mars Exploration Campaign.

The Commercial Lunar Payload Services contracts will have a combined maximum value of $2.6 billion during the next ten years. The agency will look at several factors when comparing the bids, including price, schedule, and technical feasibility.

Back in October of this year, NASA issued a call for potential instruments and technologies for studying the Moon. Those proposals are due in January 2019. This will make lunar payload flight launches possible as early as 2019, as well. If all goes well, these early missions could enable important technology demonstrations that will allow for the development of future landers as well as other explorations systems that are needed for humans to return to the lunar surface. Ultimately, this will help prepare the agency to send astronauts to Mars.

“Today’s announcement marks tangible progress in America’s return to the Moon’s surface to stay,” said Bridenstine. “The innovation of America’s aerospace companies, wedded with our big goals in science and human exploration, are going to help us achieve amazing things on the Moon and feed forward to Mars.”

NASA may offer additional companies the opportunity to join the Commercial Lunar Payload Services through a contract process called on-ramping. They will do this by periodically re-examining the private market for new and emerging lunar delivery capabilities.

For now, the companies that have been selected are:

Astrobotic Technology, Inc: Pittsburgh
Deep Space Systems: Littleton, Colorado
Draper: Cambridge, Massachusetts
Firefly Aerospace, Inc: Cedar Park, Texas
Intuitive Machines, LLC: Houston
Lockheed Martin Space: Littleton, Colorado
Masten Space Systems, Inc: Mojave, California
Moon Express: Cape Canaveral, Florida
Orbit Beyond: Edison, New Jersey

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: NASA to Broadcast Russian Supply Mission to ISS

Back in early October, the Soyuz Spacecraft carrying Cosmonaut Alexey Ovchinin and Astronaut Nick Hague was forced to abort its mission during launch due to separation failure of the first stage boosters.

Luckily for those aboard the ISS, there were still plenty of supplies to get the crew through the next few months of zero-G living.

Recently, NASA announced the Russian cargo vessel, Progress 71, is set to launch this Friday, November 16th from the Baikonur Cosmodrome in Kazakhstan at 1:41pm EST.

Loaded with almost three tons of fuel, food, and supplies, the unmanned spacecraft will dock with the Zvezda Service Module on the

Photo courtesy NASA

Russian segment where it will remain for the next four months.

In March, the Progress 71 will depart for deorbit into Earth’s atmosphere.

For those interested in watching the launch live, you can see it on NASA Television Website. For those here in the Borderland, the live stream will begin at 11am local time.

Additionally, if you’d like to watch the live broadcast of the docking, tune in to NASA TV on Sunday, November 18th, at 11:45am MST.

***

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: Soyuz Failure and the Future of Spaceflight

Last week, the Soyuz spacecraft had to suddenly abort its flight to the ISS, sending Cosmonaut Alexey Ovchinin and Astronaut Nick Hague on a rapid decent to the Earth below.

In an interview with the Associated Press, Nick Hague gave his account of what it was like during the failed mission.

“We knew that if we wanted to be successful, we needed to stay calm and we needed to execute the procedures in from of us as smoothly and efficiently as we could. Any time you’re launching yourself into space and your booster has a problem when you’re going 1,800 meters per second, things are pretty dynamic, and they happen very fast.”

Warning lights gave the first indication of a problem just as the team was able to see the curve of the horizon as the atmosphere faded to black.

“I knew once I saw that light that we had an emergency with the booster, that at that point we weren’t going to make it to orbit that day—so the mission changed to getting back down on the ground as safely as we could. That’s the system that saved our lives, Alexey and I are standing because of that.”

Although many have been skeptical of future launches aboard Soyuz rockets, Hague reassures the public that there is little need to worry.
“[the abort system is] on every rocket, and for manned launches on the Soyuz, they haven’t had to use that system for 35 years, but it’s always been there. It’s always been ready, and we proved that last week. The Soyuz is an engineering marvel. That thing is reliable, and I’m just glad that there are so many people that have invested so many years of their life making that system as strong as it is.”

Alexey Ovchinin spoke highly of Nick Hague’s response to the emergency, saying, “My partner, Nick, acted as a true expert and was completely coolheaded. I never saw even a hint of fear in his eyes. [he responded] immediately to all questions from the Earth. It was obvious that he was in total control of the situation.”

Hague recalls when they finally landed safely and were waiting for rescue, “You can imagine the scene.

We’re kind of hanging upside-down from our straps…and we looked at each other, big grins. He holds out a hand. I shake his hand. And then we start cracking a few jokes between us about how short our flight was.”

Now that the crew is home and in good health, Roscosmos has continued their investigation into what happened.

The Soyuz MS-series has a modular design. At launch, four first-stage boosters ignite. Each of these are fueled by kerosene RD-107A engines. Because these four boosters are radially arranged, once they finish their job, they are simultaneously jettisoned.

The Russian agency believes that it is likely that a collision between part of the first and second stage booster separation occurred when part of the first stage didn’t separate cleanly.

If that’s the case, the failed booster may have collided with the body of the rocket as it ejected minutes after launch.

This would have led to the automatic abort.

Though the investigation isn’t yet completed, the Russian agency is close to solving the mystery. In fact, Roscosmos is expected to release a full report around October 20th.

NASA Chief, Jim Bridenstine shared his faith in continued work with Roscosmos in the near future. “I fully anticipate at this point that we will fly again on a Russian Soyuz rocket, and I have no reason to believe, at this point, that it won’t be on schedule.”

Bridenstine went on to say, “I look forward to a very bright future for both or these countries and for all of our international partners. The NASA family has to be so proud of all the people that worked so hard and prepared so well for this. We had the right people in the right place.”

Likewise, Dmitry Rogozin of Roscosmos states, “This rocket has a long history of failureless execution,” reaffirming his faith in the Soyuz program.

Both men are certain that Alexey Ovchinin and Nick Hague will be able to fly again aboard a Soyuz rocket this coming Spring.

This is all good news, but a Spring launch could still mean the ISS is in jeopardy. Though the crew has plenty of supplies, and can continue their experiments in orbit, they can’t stay up there forever. The ISS has a Soyuz MS-09 spacecraft docked, currently. It arrived last June and has a 200-day certification life.

This means that the craft must be cleared to fly prior to the end of that time. Failure to do so might mean the ISS is left without a crew on board. And with SpaceX and Boeing test launches still a way off for manned craft, it may be a while before a replacement crew can be sent to the ISS.

Without a crew to man the onboard systems, the ISS could potentially lose attitude control, which would send it tumbling. If this were to happen, the antennas would quickly lose signal lock and be unable to receive commands.

Without those commands, the solar arrays would no longer be pointed at the sun and the batteries would completely run out of power. Once this happens, no crew could dock with the station in order to regain control.

Though this would pose no immediate danger to those of us living on the ground, it would mean a substantial loss for all the countries that invested in, and still use the station for zero gravity experiments and training.

So, while shooting for the moon is a worthy venture, it seems we have more pressing concerns. And with NASA unable to fly without the help of commercial companies or international partnerships, perhaps our immediate focus should be on getting crews off the ground before we make plans to aim for our nearest cosmic neighbor.

*

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Video+Story: Amy’s Everyday Astronomy – Soyuz Crew Safe After Launch Failure

Early Thursday morning, the Russian Soyuz rocket failed during its launch while carrying a US-Russian crew to the International Space Station.

Luckily, the crew is safe despite the capsule falling back to Earth in a ballistic re-entry, according to NASA officials.

While NASA hasn’t provided many details about the failure, they did confirm that there was an issue when the booster failed to separate from the Soyuz.

NASA has also stated that Roscosmos has created a commission to investigate exactly what went wrong. NASA and Roscosmos worked closely to insure the safe retrieval of the crew of the Soyuz and both astronauts have been taken to Moscow to be medically evaluated.

NASA Chief, Jim Bridenstine was on site at Baikonur Cosmodrome in Kazakhstan during the launch. This was the first time he has attended a Russian launch since becoming the NASA Administrator.

NASA astronaut Nick Hague (lf) and Russian Cosmonaut Alexey Ovchinin (rt)

In a statement following the launch failure, Bridenstine emphasized the importance of crew safety said “NASA astronaut Nick Hague and Russian cosmonaut Alexey Ovchinin are in good condition following today’s aborted launch. I’m grateful that everyone is safe. A thorough investigation into the cause of the incident will be conducted.”

Obviously, this failure will cause ripples within the schedule of the ISS crew as well as planned spacewalks that were to take place on October 19th and 25th to replace batteries attached to the outside of the space station.

Those spacewalks had already been delayed after a Japanese cargo vehicle carrying the new batteries ran into launch issues back in September.

And while it’s too early to determine if this launch failure will affect the return of the ISS astronauts that is scheduled for December, the good news is that the ISS crew has plenty of supplies.

Another piece of good news is that SpaceX is planning to launch an unmanned test flight in January of its Crew Dragon spacecraft.

Depending on NASA’s needs, SpaceX states the Crew Dragon could be ready to launch as early as December of this year. If all goes well with this launch, a manned flight of the Crew Dragon could occur as early as June of 2019.

On the heels of this news, Boeing has plans to launch an unmanned test flight of its Starliner space capsule in March of 2019 with a crewed flight to follow in August of 2019.

These prospects are exciting because it will mean that NASA will no longer be dependent on Russia’s Soyuz rockets to ferry astronauts back and forth to the ISS.

If you’d like to see the entire launch, you can check out the official NASA YouTube video above.

*

For a daily dose of Everyday Astronomy with Amy, like and follow her Facebook Page; to read previous articles, click here.

Amy’s Everyday Astronomy: To the Moon and Beyond

Earlier this week, NASA Chief Bridenstine met with the Senate to assure them that Space Directive One, as laid out earlier this year by President Trump was well underway.

During this meeting, he explained that low Earth orbit needs to be driven by commercial enterprise. “And that’s underway right now.”

To accomplish this, NASA plans to use “Commercial Lunar Payload Services (CLIPS).” This would give commercial companies the opportunity to land on the moon and NASA will become a paying customer of that. This falls in line with a recent announcement by SpaceX.

The company stated that should development and testing of the BFR (Big Falcon Rocket) go smoothly, they have plans to launch the first orbital flights of the 100-passenger spaceship by 2020 or 2021 at the earliest.

NASA’s next plan will be heavier landers capable of heavier payloads as well as prospectors, “…things that can dig,” said Bridenstine. “We know from NASA’s achievements back from 2008 and 2009, we know that there are potentially hundreds of billions of tons of water ice on the moon. Beyond that we need heavier landers that can take humans to the moon.”

Parallel to this plan, SpaceX also recently entered into a contract with iSpace. This Japanese start-up company is set to launch its lunar lander and mini-rovers aboard the Falcon 9 rockets in 2020 and 2021.

In time, iSpace hopes to set up a robotic lunar transportation service in order to use its rovers to help identify and exploit the potential resources available on the moon.

Further, NASA plans to use Tugs (commercial spacecraft like the Falcon 9) that go from low earth orbit to the Gateway, and from the gateway to the surface of the moon.

“These become a critical part of the infrastructure that can be used to capitalize on, with the commercial partners and international partners,” Bridenstine said. The potential of the Gateway is exciting because it gives more access to more parts of the solar system than ever before.

To help best utilize the new NASA budget for these initiatives, Bridenstine stated “Under the president’s budget request, the International Space Station will no longer receive direct support in the year 2025.”

Meanwhile, SpaceX has been planning a similar venture starting with a mission called #dearMoon that could lift off by 2023 on a week-long journey around the moon and back again. This first lunar flight would have the first paying passengers on board: Japanese billionaire, Yusaku Maezawa as well as six to eight artists.

The company is also planning to establish a base on the moon by 2028.

One of the ideas for a lunar base or permanent settlement being considered is the potential for something below the lunar surface. Staying below the surface could give the possible benefit of better protection from harmful solar radiation than anything man-made above ground.

To explore the viability of this, scientists have been practicing at Lava Beds National Monument in California. During their time in the lava tubes, three types of portable technologies are being evaluated: ground-penetrating radar, a magnetometer, and a gravimeter. Hopefully these evaluations will help future lunar settlers map lava tubes from the surface in order gauge the stability of each prior to entering.

Once we have mastered how to survive and build on the moon, we can begin moving on to other worlds like Mars. Especially since launching from the moon requires far less fuel to reach escape velocity.

And with both NASA and SpaceX aiming for the moon within the next decade, establishing a base on Mars seems more like more science fact than science fiction.

***

To read Amy’s previous stories, click here.

Bel Air High School Selects NASA Manager As Honored Ex for Homecoming

On Wednesday, Bel Air High School officials announced Christopher Carson, Highlander Class of 1986, as the Brenda Sandoval Honored Ex for 2018.

Of Carson, Bel Air school officials said, “His life exemplifies all that Bel Air expects from its graduates: a call to service, independence and responsibility.”

Carson, a graduate of the class of 1986, served as an airman with the United States Air Force. While serving our country, both here and abroad, he earned his degree in Engineering from New Mexico State University. He went on to work in the private sector for Boeing and the Hughes Corporation before accepting a position at NASA.

Carson also received his Masters degree from NMSU. He has continued to give back to his community as a guest presenter at various student career days, even here at Ysleta ISD.

Carson currently holds the title of Flight Integration Manager with NASA, which means that if you want to put a satellite into space, you need to talk to him.

He is married to another Bel Air alum, Beth Bailey and they have 3 beautiful daughters.

Click here to see a list of Homecoming activities.

NASA Chief Plans to Send Astronauts Back to the Moon

On the heels of a press conference regarding the proposed Space Force held earlier this month by Vice President, Mike Pence, NASA Chief, Jim Bridenstine announced his plan to send astronauts back to the moon…to stay.

Humans haven’t stepped foot on the moon since December 1972, and Bridenstine feels that’s far too long.

“If you go back to 2009, the United States, through NASA, made a critical discovery, which is the moon has hundreds of billions of tons of water ice. To me, that should have changed our direction immediately,” he said. “From 1969, when we first landed on the moon, up until 2009, a lot of people believed that the moon was bone-dry. So, the question is — during those 40 years, we missed that. What else have we missed?”

Water ice is exciting! Not just for the consumption of astronauts stationed on a future moon base, but as a possible fuel source. Because water is made up of hydrogen and oxygen, the hydrogen can potentially be extracted and used as a propellant for spacecraft.

Bridenstine also said he sees the moon as a way forward to points farther out in the solar system, and he’s not wrong. With the lack of atmospheric drag and lower gravity of the moon, spacecraft would need far less fuel to escape the lunar surface. This makes it an ideal launching platform to venture out to other worlds, like Mars.

But there are other benefits to lunar bases, as well.

“I think a lot of people miss the fact that the moon represents an amazing proving ground for all of the technologies and the human-performance capabilities that are necessary to survive on another planet and the ability to develop in-situ utilization abilities,” Bridenstine said.

What, exactly, are the newly appointed NASA Chief’s plans?

According to Bridenstine, the key is in building “Gateways”— small platforms in lunar orbit that will serve as outposts or transport points.

“The [first] Gateway is going to be in a near-rectilinear halo orbit. It is not optimum for getting to the surface of the moon, but it enables with a very low propulsion capability — we’re talking about solar electric propulsion — it enables us to stay in that orbit for a very, very long period of time,” Bridenstine said.

And that’s not all. Bridenstine sees potential for international use, both commercial and scientific, of these “Gateways.”

“What we want to do is enable more people to have access to the lunar surface than ever before and more people to have access to lunar orbit than ever before,” he said. “The interfaces we have on Gateway, whether it is power or docking, it is all going to be published on the internet.”

The NASA Chief made it clear, though, that the Gateway wouldn’t be another ISS. Rather, it would only be able to support humans for 30-60-day science missions, but not meant to house a permanent crew.

For more permanent settlements, like lunar bases, there is huge potential.

Recently, the European Space Agency announced their “lunar masonry” studies that are exploring the possibility of using dust from the moon’s surface as a building material for bases and other settlements on the surface.

Because the moon’s surface is made of basaltic material called silicates, ESA officials and researchers are analyzing volcanic material near Cologne, Germany that is a close match for lunar dust. And because lunar soil is made of 40% oxygen, researchers are also studying how to extract it for use by astronauts to extend their stays on the moon.

NASA has even been testing and improving on the powerful RS-25 engine designed 40 years ago to power the space shuttles.

When adding all these ideas and tests together the timing seems right for American’s to, once again, pioneer a new frontier.

Op-Ed: Space Force an Unlikely Idea Best Left in the Hangar

To some, the idea of a Space Force might seem exciting, especially being locked to Earth as America has become since the Shuttle program was retired on August 31, 2011.

Since that time, we have been hitching rides aboard rockets of other countries to continue working aboard the International Space Station (ISS). Recently, space has become an exciting adventure once again with several successful launches of SpaceX’s Falcon 9 and the beautiful return of its boosters to the landing pad.

So, it seems natural that the idea of a government funded Space Force would spark the imagination, until you read the fine print.

Earlier this month, Vice President Mike Pence held a press conference outlining the reasoning behind and the steps necessary to develop a Space Force as a new branch of the military.

His speech started off by talking of three new space policy directives signed by President Trump that “will reorient our space program toward exploration, unleash America’s burgeoning commercial space companies, and safeguard our vital space assets with a new space traffic management policy.”

For a brief minute, this might bring to light thoughts of the continued search for habitability on other worlds, alien life in any form, or even astro-mining for resources outside the confines of Earth. But then, Pence goes on to talk about the highest priority of the Space Force being the “safety and security of the American people” from “growing security threats emerging in space.”

Just after the second world war ended, the Air Force was created as its own branch of the military to ensure our dominance in the air. This is the reasoning behind the push for a Space Force, according to Pence. “Space is a warfighting domain just like land and air and sea,” he says.

Suddenly, the paranoia starts with some people wondering about what threats from space he could be talking about. Clips from movies like Independence Day start auto-playing in the mind.

According to the Trump Administration, the space environment has fundamentally changed from what was once peaceful and uncontested, to crowded and adversarial, with other countries seeking to disrupt our space base systems and challenge America’s supremacy in space as never before.

The Vice President talks of Russian missiles that can be launched mid-flight and China destroying one of its own satellites, and then proposes that these countries MAY target our satellites.

So, no attack from aliens looming on the horizon. Okay.   What exactly is the outline of the four-step plan?

First, the creation of a new combat and command for space, The United States Space Command, led by a four-star flag officer to insure integration across the military.

Second, an elite group of joint war fighters specializing in the domain of space, drawing men and women from across the military to support the Space Command by providing space expertise in times of crisis and conflict.

Third, the creation of the Space Development Agency that will ensure the men and women have the cutting-edge war fighting capabilities.

The fourth step calls for clear lines of responsibility and accountability by creating a single civilian position that reports to the Secretary of Defense to oversee the new branch of service as the New Assistant Secretary of Defense for Space.

Though no details on who is being considered to fill any of these roles for command or training of the personnel, it appears this four-step plan has more to do with militaristic maneuvers than pioneering a new frontier, as his speech initially led us to believe.

And with the looming and ever-increasing national deficit that seems to be causing cuts to other, perhaps more important programs, it appears unlikely that the creation of a Space Force will ever see fruition.

 

***

Amy Cooley is an astronomy enthusiast with a passion for making astronomy and everything cosmos-related, accessible to everyone through her blog Everyday Astronomy With Amy.

 

Amy’s Astronomy
Bordertown Undergroun Show 728
shark 728×90
Rugby Phoenix 2019
STEP 728
ORDT_728
Utep_DEC_728
JustLikeThat728
GECU FAMILY OF CARDS 728X90